Document Type : Articles

Authors

1 Food Science Department, College of Agriculture, Tikrit University

2 Food Science Department, College of Agriculture, Tikrit University, Tikrit, Iraq

3 College of medicine, Tikrit University, Tikrit, Iraq

Abstract

The research aimed to prepare the nanoparticles of zinc, vitamin D3 and cysteine with selenium nanoparticles (Se-NPs), and to determine the effect of each of them in inhibiting both the isolated Escherichia coli and Staphylococcus aureus isolated from food by estimating the minimum inhibitory concentration (MIC) and well with Kerbey method. The results showed that the conjugations of zinc, vitamin D3 and cysteine with se-NPs were more effective in bacterial inhibition compared to inhibition of Se-NPs alone.  The MIC of Se-NPs alone or in combination with Zn, D3 or Cysteine against both species of bacteria was appeared at 1% and above. The diameter of the inhibition zone to concentrate 25% from nanoparticles against E.coli bacteria was between 26 to 30 mm and against Staph. aureus was appeared between 17 to 22 mm.

Keywords

  1. Al Jahdaly, B. A., Al-Radadi, N. S., Eldin, G. M., Almahri, A., Ahmed, M. K., Shoueir, K., and Janowska, I. (2021). Selenium nanoparticles synthesized using an eco-friendly method: dye decolorization from aqueous solutions, cell viability, antioxidant, and antibacterial effectiveness. journal of materials research and technology, 11:85-97.‏
  2. Alfred, E. B. (2005) Bensons Microbiological applications in laboratory manual in general microbiology 9th ed. McGraw– Hill Componies.
  3. Atlas, R. M.; Brown, A. E. and Parks, L. C. (1995). Laboratory manual experimental microbiology. Mosby Company.
  4. Baron, E. J. and Fingold, S. E. (1994). Diagnostic Microbiology .9th . Ed. the C.V. Mosby Company. Baltimore.
  5. Berkowitz, F. E and Jerris, R. C. (2016). Practical Medical Microbiology for Clinicians. Wiley Blackwell.‏
  6. Boroumand, S., Safari, M., Shaabani, E., Shirzad, M., and Faridi-Majidi, R. (2019). Selenium nanoparticles: synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activity. Materials Research Express, 6(8), 0850d8.‏
  7. Brown, A. E. and Smith, H. (2015). Benson's microbiological applications: laboratory manual in general microbiology, Short Version, Thirteenth edition. McGraw-Hill Science, Engineering and Mathematics.
  8. CLSI, (2011). Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-First Informational Supplement. Vol. 30 (1): 145-157.
  9. Da Silva, M. A. C., Cavalett, A., Spinner, A., Rosa, D. C., Jasper, R. B., Quecine, M. C. and Lima, A. O. (2013). Phylogenetic identification of marine bacteria isolated from deep-sea sediments of the eastern South Atlantic Ocean. Springerplus 2: 127.‏
  10. Duncan, D. B. (1955) Multiple range and F. test. Biometric 11: 42.
  11. Haddadian, A., Robattorki, F. F., Dibah, H., Soheili, A., Ghanbarzadeh, E., Sartipnia, N., and Mirzaie, A. (2022). Niosomes-loaded selenium nanoparticles as a new approach for enhanced antibacterial, anti-biofilm, and anticancer activities. Scientific Reports, 12(1), 21938.‏
  12. Harley, J. P. and proscott, L. M. (1996). Laboratory Exercises in Microbiology, 3rd ed. WCB/ Mc Graw–Hill.
  13. Hashem, A. H., Selim, T. A., Alruhaili, M. H., Selim, S., Alkhalifah, D. H. M., Al Jaouni, S. K., and Salem, S. S. (2022). Unveiling antimicrobial and insecticidal activities of biosynthesized selenium nanoparticles using prickly pear peel waste. Journal of Functional Biomaterials, 13(3): 112.‏
  14. Jawetz, E.; Brooks, G. F.; Butel, J. S. and Morse, S. A. (2004). Jawetz,Melnick and Adelberg,s Medical microbiology 23rded. McGraw-Hill Com., Singapore.
  15. Medina Cruz, D., Mi, G., and Webster, T. J. (2018). Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin‐resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. Journal of Biomedical Materials Research Part A, 106(5): 1400-1412.
  16. Msalya, G. (2017). Contamination Levels and Identification of Bacteria in Milk Sampled from Three Regions of Tanzania: Evidence from Literature and Laboratory Analyses. Veterinary Medicine International.
  17. Roberts, D. and Greenwood, M. )2003(. Practical food microbiology. 3ed Edt., Blackwell publishing Inc., 350 Malden, Massachusetts 02148-5018, USA.
  18. Salem, S. S. and Fouda (2021) A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biol. Trace Element Res. 199, 344–370.
  19. Salem, S. S., Fouda, M. M., Fouda, A., Awad, M. A., Al-Olayan, E. M., Allam, A. A., and Shaheen, T. I. (2021). Antibacterial, cytotoxicity and larvicidal activity of green synthesized selenium nanoparticles using Penicillium corylophilum. Journal of Cluster Science, 32, 351-361.‏
  20. SAS, (2012). Statistical Analysis System, User's Guide. Statistical. Version 9.1th ed. SAS. Inst. Inc. Cary. N.C. USA.
  21. Subhan, M. A., and Muzibur Rahman, M. (2022). Recent development in metallic nanoparticles for breast cancer therapy and diagnosis. The Chemical Record, 22(7), e202100331.‏
  22. Thongaram, T. (2016). In vitro evaluation of selected probiotic properties of lactic acid bacteria isolated from the traditional fermented vegetable. Conference Proceedings . Paper presented at International Scientific Conference on Probiotics and Prebiotics, Budapest. In Kysucke Nove Mesto, ISBN- 978-80-89589-14-2.
  23. Vahdati, M., and Tohidi Moghadam, T. (2020). Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Scientific reports, 10(1): 510.