Assessing the compost of *Prosopis farcta* and *Alhagi maurorum* as organic fertilizer for potato growth and yield (*Solanum tuberosum* L.)

Ghassan J. Zaidan 1, Kutaiba Y. Aied 1,2 and Abdulkareem E. S. Alkurtany 3

1,2 Department of Horticulture and Landscape, College of Agriculture, Tikrit university, Tikrit, Iraq.
3 Department of Soil Science and Water Resource, College of Agriculture, Tikrit University, Tikrit, Iraq.
Correspondence email: ghassanjayed@tu.edu.iq

ABSTRACT

Growing potatoes requires great care because it needs large nutrients. Proper fertilization is a critical aspect of improving yield. This study comprises a field experiment to assess the impact of several fertilization approaches on the crop performance of potato (cv. Montreal). In this context, we used eight distinct fertilizer treatments: control (T0), standard mineral fertilizer (T1), substance mushroom spent (T2), cow + poultry manure (T3), compost (T4), 50% standard mineral fertilizer comprising substance mushroom spent (T5), 50% standard mineral fertilizer augmented with cow + poultry manure (T6) and 50% standard mineral fertilizer augmented with compost (T7). The results indicate that control treatment gave least days to mean germination time. While the standard mineral fertilizer (T1) had the highest values in chlorophyll content in leaves, single tuber weight, tuber count per plant, and plant yield. On the other hand, (T6) showed significant increment in number of tubers per plant. Meanwhile, (T7) treatment produced higher marketable yield and tuber per plant. Whereas, there are not significant difference among treatments in number of arial stems. on the other hand, these results were the lowest for the control treatment. Hence, the fertilization approach extensively impacts vegetative development and tuber yield.
تقييم كمبوست نباتي الشوك و العاقول Prosopis farcta و Alhagi maurorum كسماد عضوي في نمو حاصل البطاطا (Solanum tuberosum L.)

غسان جايد زيدان، قتيبة يسر عابد، عبدالكريم عريبي سبع الكرطاني

الخلاصة

تتطلب زراعة البطاطا عناية كبيرة لأنها تحتاج إلى كميات كبيرة من العناصر الغذائية، وينبغي التسميد المناسب جنباً إلى جنب مع التحسين العائدي. لتجارب تأثر أنواع من السماد في نمو و حاصل البطاطا (صنف مونتريال). أُستخدمت ثمانية معاملات سمادية: المقارنة (T0)، الأملاك الكيميائية (المعدنية) (T1)، مخلفات انتاج الفطر (T2)، مخلفات البق + مخلفات الدجاج (T3)، كمبوست الشوك و العاقول (T4)، الأملاك الكيميائية بنسبة 50% مع مخلفات انتاج الفطر (T5)، الأملاك الكيميائية بنسبة 50% مع مخلفات البق و الدجاج (T6)، الأملاك الكيميائية بنسبة 50% مع كمبوست الشوك و العاقول (T7). تشير النتائج إلى أن معالمة المقارنة (T0) قد أعطت أقل عدد أيام للبزوغ، بينما الأملاك الكيميائية (T1) قد أعطت زيادة معنوية في كل من محتوى الأوراق من الكلورفيل و وزن الدرن الواحدة و حاصل النبات الواحد. فيما أعطت معالمة (T6) على عدد درنات كل نبات، في حين أعطت معالمة (T7) زيادة معنوية في كل من صفيه عدد الدرنات الصالحة للتسويق و الحاصل الصالح للتسويق. و لم يكن هناك اختلافات معنوية بين المعاملات في صفة عدد السيفان الهوائية. وبالتالي، فإن طريقة التسميد تؤثر بشكل كبير على النمو الخضري وإنتاجية الدرنات.

الكلمات الافتتاحية: سماد معدني، سماد عضوي، مخلفات انتاج الفطر

INTRODUCTION

Potatoes (Solanum tuberosum L.) comprise a significant part of human food globally; hence, they are the fourth most consumed vegetable globally (FAOSTAT, 2020 and Al-Jaf et al., 2023). Potatoes' significant per capita use is understandable since they have ample carbohydrates and minerals; furthermore, potatoes have significant quantities of vitamin C, minerals, proteins, and antioxidants (Brown, 2005; Hussain and Ahmed, 2023).

Potato is among the important vegetables grown across the southern Mediterranean. Italy and Spain are significant producers, accounting for 1.3 and 2.0 million tons annually (FAOSTAT, 2020). Nevertheless, the past decade has witnessed an extensive increase in the farming sector with respect to the overall harvested area and potato produce (36.7% and 19.5%, respectively) that has been offset to an extent by higher yields owing to the use of more productive genotypes and better farming techniques (FAOSTAT, 2020). To improve overall yield, potato farmers have been...
interested in defining suitable fertilization approaches, leading to additional benefits like lower cost and better quality (Fontes et al., 2010; Fontes et al., 2016).

The use of fertilizer plays a crucial role in agricultural production. The practice can be traced back to the Neolithic Revolution when humans transitioned from a nomadic lifestyle to farming. During this time, settlements were established, while migration was reduced. Initial settlement began, and waste was collected in pits near homes, as documented relating to Sumerian cities around 6000 BC (Diaz et al., 2007).

Research indicates that even earlier, manure was utilized to enhance crop growth (Bogaard et al., 2013). Today, organic fertilizers continue to be a vital component of agricultural production, alongside organic and mineral-based fertilization. Each type of fertilizer (organic manures, organic, and mineral) influences soil and crops through different mechanisms. Organic manures improve the physical, chemical, and biological properties of soil; however, their nutrient levels are low, requiring high application rates (Simon and Czakó, 2014; Bobulska et al., 2015; Hamm et al., 2016; Chen et al., 2018; Kobierski et al., 2020; Du et al., 2020). The constituents of organic fertilizers can vary greatly, both within and between varieties (such as slurries and manures), and is dependent on their source (Yang and Ha, 2013; Al-Ali and El-Hamdani, 2023).

The rate at which manure is mineralized varies significantly based on manure type and environmental aspects. Organic manures with low carbon-to-nitrogen ratios, such as slurries, provide an extensive amount of nutrients in the first year of use, while those with a high C:N ratio, like farmyard manures (FYM), provide nutrients at a slower rate over an extended period (Eghball et al., 2002). Despite their benefits, even organic fertilizers can have a negative impact on the environment if used excessively or if they contain harmful substances that find their way into water or soil; such contaminants include veterinary pharmaceuticals (Ghirardini et al., 2020; Salman et al., 2023).

For thousands of years, agriculture was carried out without relying on synthetic chemicals. Recent advancements in soil management have led to a rise in the use of chemical fertilizers to boost crop production by enhancing nutrient availability. However, using these agrochemicals leads to a decline in cultivable land quality and contributes to increased agricultural contamination. To address these issues, organic farming is the only viable alternative that relies solely on natural resources, such as organic matter, plant and animal waste, and microbes (Ahmad et al., 2007). The use of organic fertilizers has proven to be effective in enhancing soil fertility and reducing
pest and disease concerns (Abbasi et al., 2002; Barker and Bryson, 2006; Khadem et al., 2010). Numerous works recently validated organic manure use to enhance potato development and yield (Wazir et al., 2018; Ahmed et al., 2019; Abou El-Goud et al., 2021). Organic fertilization is emerging as a crucial aspect of environmentally conscious and sustainable farming. The residual aspect of organic sources creates better viability for the complete ecosystem as opposed to individual crops (Arora and Maini, 2011). In recent times, farmers have shifted their preference to organic farming instead of synthetic fertilizers due to cost and soil efficacy and fertility concerns (Oyedeji et al., 2014).

Thus, the aim of the current research is to assess the impact of different varieties of organic fertilizers on the growth and yield of potato plants and to explore substitute, economically sustainable, and environmentally conscious techniques of utilizing chemical fertilizers.

MATERIALS AND METHODS

Location of the Experiment and its Layout

The experiment was conducted at an experimental region at the Department of Horticulture and Landscape/ College of Agriculture/ Tikrit University in Tikrit, Iraq. The research area is situated at 34° 40’ 51.93” N latitude and 43° 38’ 59.87” E longitude. The test evaluated the Montreal variety potato (Solanum tuberosum L.). This hybrid high-yield variety was introduced in 1997 through Amalia X Amora cultivars. The Montreal potato possesses a smooth yellowish skin, medium tuber size, and oval shape. This potato species has an extensive dry content percentage and is resilient against viral diseases (Canadian Food Inspection, 2020). An overall area of 90 m² was used for cultivating Montreal variety tubers having about 50 g weight along with other materials. Before planting, soil preparation was done to build about 20 cm height ridges. The tubers were hand planted on 17th February 2019. The ridges were separated by 75 cm, while a 30 cm separation was maintained within a ridge; the plantation was made at 8–10 cm depth. Sand clay loam soil was used. A soil sample was gathered from 0-15 cm depth. This sample helped determine the chemical and physical characteristics before soil was chemically fertilized. The chemical properties of the gathered sample were ascertained using this technique (Hunter, 1984). The soil was mildly alkaline (pH 7.4) with inadequate fertility; the organic material was 1.12 g kg⁻¹. Element availability was at 48 mg kg⁻¹ N, 6.8 mg kg⁻¹ phosphorous, and 93 mg kg⁻¹ potassium. Moreover, other properties include 1.3 g cm⁻³ bulk density, 2.22 ds m⁻¹ EC, 16 cmol kg⁻¹ soil CEC,
160 mg kg$^{-1}$ CaCo3 and 130 mg kg$^{-1}$ CaSo4. The tests were conducted in adherence with the Randomize Complete Block Design. Every test plot comprises one ridge.

Treatments

The plot was 1 m wide and 3 m long (3 m2); there were 1 m wide corridors between the plots. Every fertilization test comprised four identical samples; hence, 32 plots were tested for the study. Where there were 10 plants in experiment unit. The study comprised eight fertilizer treatments: (i) Control (T0) without fertilizer use, (ii) standard mineral fertilizer (T1) in quantities that allowed using 200 kg ha$^{-1}$ of N based on urea (46% N), 160 kg ha$^{-1}$ P based on triple super phosphate (20% P), and 200 kg ha$^{-1}$ K based on potassium sulphate (48% k). (iii) Substances mushroom spent (SMS) at 20 t ha$^{-1}$ level (T2), (iv) cow waste with poultry manure at 20 t ha$^{-1}$ level (T3), (v) compost at 20 t ha$^{-1}$ level (T4), (vi) 1/2 portion typical mineral fertilizer + substances mushroom spent (T5), (vii) 1/2 typical mineral fertilizer + cow waste and poultry manure (T6) and (viii) 1/2 typical mineral fertilizer + compost (T7).

Urea was the fertilizer source to provide nitrogen for treatments T1, T5, T6 and T7. Two doses were used (50% at planting day; subsequently, 45 days). Other manures and mineral fertilizers were used during planting. The drip irrigation approach was used; hoeing was used for ridge and weed removal. Pests and other harmful organisms were kept in check using chemical means based on conventional cultivation standards.

Application of Compost, NPK, and Organic Fertilizer

A single dose of organic fertilizer and compost was used after land preparation. Table 1 lists an assessment of organic and compost-based fertilizers. Concerning the use of mineral fertilization, potassium and phosphorous treatments were conducted manually when the soil was prepared. Superphosphate (20%) and potassium sulphate (48%) supplementation were used, while nitrogen was based on two identical portions used when the soil was prepared. Urea (46%) was used after six weeks to provide additional nitrogen.
Table 1. Nutritive content of different organic fertilizers used in the experiment

<table>
<thead>
<tr>
<th>Character</th>
<th>Unit</th>
<th>Compost of Prosopis</th>
<th>Compost of Alhagi</th>
<th>SMS</th>
<th>Poultry manure</th>
<th>Cow manure</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>7.2</td>
<td>7.2</td>
<td>7.2</td>
<td>7.3</td>
<td>7.1</td>
</tr>
<tr>
<td>EC</td>
<td>ds m(^{-1})</td>
<td>2.49</td>
<td>2.49</td>
<td>5.37</td>
<td>6.34</td>
<td>5.93</td>
</tr>
<tr>
<td>Total N</td>
<td>%</td>
<td>2.94</td>
<td>2.83</td>
<td>2.21</td>
<td>2.71</td>
<td>2.04</td>
</tr>
<tr>
<td>P</td>
<td>ppm</td>
<td>156.46</td>
<td>148.09</td>
<td>13.42</td>
<td>19.16</td>
<td>9.67</td>
</tr>
<tr>
<td>K</td>
<td>ppm</td>
<td>141</td>
<td>139</td>
<td>146</td>
<td>132</td>
<td>122</td>
</tr>
<tr>
<td>Moisture content</td>
<td>%</td>
<td>7.62</td>
<td>6.92</td>
<td>13.94</td>
<td>6.84</td>
<td>17.68</td>
</tr>
<tr>
<td>Organic C</td>
<td>%</td>
<td>49</td>
<td>51</td>
<td>59</td>
<td>55</td>
<td>57</td>
</tr>
<tr>
<td>C/N</td>
<td>%</td>
<td>16</td>
<td>18</td>
<td>27</td>
<td>20</td>
<td>28</td>
</tr>
</tbody>
</table>

Data Recorded

The crops were harvested 120 days after planting. Random selection was used to identify five plants from every plot.

Characteristics

a) **Man germination time (day):** After the seeds were planted, the Mean Germination Time (MGT) was estimated (Gairola et al., 2011) by studying the daily seed germination and was calculated as:

\[
\text{MGT} = \frac{\text{n1} \times \text{d1}}{\text{n2} \times \text{d2}} + \text{----------}/ \text{Total number of germination seeds}
\]

Where, \(n \) refers to the number of the germinated seeds; \(d \) indicates the number of days.

b) **Numbers of aerial stem (stem plant\(^{-1}\)):** The number of aerial stems was measured and then the average was taken for five plants from each experimental unit.

c) **Chlorophyll content in the leaves (SPAD):** It was calculated using a Chlorophyll meter (SPAD-502). The chlorophyll content was calculated from the fourth and fifth leaves of the apical of plant.

d) **Single tuber weight (g tuber\(^{-1}\)):** The single of tuber was calculated by dividing the total yield of tubers by the number of tubers.

e) **Numbers of tuber (tuber plant\(^{-1}\)):** The number of tubers per plant was calculated by dividing the total number of tubers by the number of plants.
f) **Yield of plant (kg plant⁻¹):** The total yield was counted per plant by dividing the weight of the total yield of plants by the number of plants.

g) **Numbers of tuber marketable (tuber plant⁻¹):** The number of tubers per plant was calculated by dividing the total number of tubers by the number of plants after excluding tubers weighing less than 10 g and damaged ones.

h) **Yield of marketable tuber per plant (kg plant⁻¹):** The yield of marketable tuber per plant calculated by dividing the weight of the total yield of plants by the number of plants after excluding tubers weighing less than 10 g and damaged ones.

Statistical Analysis

The gathered data were assessed using statistical techniques: analysis of variance (ANOVA) technique and mean differences concerning treatments were contrasted using the Least Significant Design Test (LSD) using the SAS statistical processor software.

RESULTS AND DISCUSSION

The impact of various organic fertilizer sources affected mean germination time significantly (Fig. 1). The control treatment (T0) had the lowest day count pertaining to mean germination time. The control was followed by 1/2 mineral fertilizer + cow manure (T6), mineral fertilizer (T1) and 1/2 mineral fertilizer + compost (T7), respectively, at an identical statistical rank. On the other hand, compost-only treatment (T4) was associated with the highest day count concerning mean germination time. Hence, mean germination time differed significantly primarily due to the use of reserved fertilizing nutrients in the mother tuber (Love and Thompson-Johns, 1999; Kabir *et al.*, 2004; Zaili and Alabdaly, 2023).
Fig. 1. Mean germination time (day) as affected by organic compost and mineral fertilizers individually or in different combination rates from both

T0: Unfertilized cheek (control); T1: Standard mineral fertilizer; T2: Substances mushroom spent (SMS); T3: Cow + poultry manure; T4: Compost; T5: 1/2 standard mineral fertilizer + substances mushroom spent; T6: 1/2 standard mineral fertilizer + cow with poultry manure; T7: 1/2 standard mineral fertilizer + compost. (CV: Coefficient of variation, LSD: Least Significant Difference).

Aerial stems of potato were not significantly affected by different fertilizers (Fig. 2).

Fig. 2. Aerial stem (stem plant⁻¹) as affected by organic compost and mineral fertilizers individually or in different combination rates from both

T0: Unfertilized cheek (control); T1: Standard mineral fertilizer; T2: Substances mushroom spent (SMS); T3: Cow + poultry manure; T4: Compost; T5: 1/2 standard mineral fertilizer + substances mushroom spent; T6: 1/2 standard mineral fertilizer + cow with poultry manure; T7: 1/2 standard mineral fertilizer + compost. (CV: Coefficient of variation, LSD: Least Significant Difference).
Leaf chlorophyll levels are presented in Fig. 3. The outcomes suggest statistically significant differences concerning different treatments. The peak chlorophyll content was associated with the standard mineral fertilizer treatment (T1), while the cow and poultry manure (T3) treatment provided the least chlorophyll. Chlorophyll levels in plants are dependent on the levels of nitrogen available in soil; furthermore, plant nitrogen uptake is also critical for arable farming. Nitrogen uptake by plants is critical because it is needed for chlorophyll synthesis, which, in turn, is necessary for photosynthesis, which refers to the use of absorbed radiance to produce biomass (Jongschaap and Booij, 2004).

Leaf chlorophyll levels in potatoes have been studied for several plants as indirect nitrogen level indicators (Gianquinto et al., 2003). Hence, chlorophyll levels are typically normalized to a suitable N-fertilized reference (Denuit et al., 2002). Higher chlorophyll levels in leaves after mineral fertilizer use are attributed to chlorophyll production since it is critically dependent on N availability. Nitrogen is the primary element for amino acids; therefore, proteins and lipids, such as galactolipids are fundamental components of chloroplasts (Marschner, 1995).

Fig. 3. Chlorophyll content (SPAD) in potato leaves as affected by organic compost and mineral fertilizers individually or in different combination rates from both

T0: Unfertilized check (control); T1: Standard mineral fertilizer; T2: Substances mushroom spent (SMS); T3: Cow + poultry manure; T4: Compost; T5: 1/2 standard mineral fertilizer + substances mushroom spent; T6: 1/2 standard mineral fertilizer + cow with poultry manure; T7: 1/2 standard mineral fertilizer + compost. (CV: Coefficient of variation, LSD: Least Significant Difference).
Single tuber weight

As indicated in Fig. 4, the use of chemical fertilizer (T1) provided a significant rise in individual tuber weight (87.86 g), while the control (T0) weighed 46.32 g. Also, the differences between treatments T2, T3 and T4 and the control are insignificant. Plants fertilized using inorganic treatments had adequate nitrogen, phosphorus, and potassium levels, allowing noteworthy development, better foliage, increased photosynthesis, and larger tubers (Imas and Bansal, 1999). Phosphorous and nitrogen enhance tuber development (De La Morena et al., 1994). It was ascertained that inorganic fertilizers provide nitrogen, phosphorus, and potassium, enhancing tuber size. Fertilizers enhance dry content and protein levels in potato tubers (Zelalem et al., 2009).

![Fig. 4. Single tuber weight (g) as affected by organic compost and mineral fertilizers individually or in different combination rates from both](image)

T0: Unfertilized cheek (control); T1: Standard mineral fertilizer; T2: Substances mushroom spent (SMS); T3: Cow + poultry manure; T4: Compost; T5: 1/2 standard mineral fertilizer + substances mushroom spent; T6: 1/2 standard mineral fertilizer + cow with poultry manure; T7: 1/2 standard mineral fertilizer + compost. (CV: Coefficient of variation, LSD: Least Significant Difference).

The impact of organic and inorganic treatments on tuber count is indicated in Fig. 5. Plots fertilized using 50% mineral fertilizer with cow manure (T6) or 100% mineral fertilizer (T1) indicated a noteworthy increase in tuber count than the control treatment (T0). On the other hand, tuber count associated with T2, T3, T4, and T7 had insignificant differences compared to the control treatment. Kumar and Wareing (1972) determined that nitrogen availability enhanced
Gibberellins production, controlling stolon count, and leading to a higher tuber count. The observations are aligned with Zidan and Dauob (2005), Hamedan et al., (2006), Al-Balikh (2008) and Amara and Mourad (2013).

Fig. 5. Number of tuber (tuber plant\(^{-1}\)) as affected by organic compost and mineral fertilizers individually or in different combination rates from both

T0: Unfertilized cheek (control); T1: Standard mineral fertilizer; T2: Substances mushroom spent (SMS); T3: Cow + poultry manure; T4: Compost; T5: 1/2 standard mineral fertilizer + substances mushroom spent; T6: 1/2 standard mineral fertilizer + cow with poultry manure; T7: 1/2 standard mineral fertilizer + compost. (CV: Coefficient of variation, LSD: Least Significant Difference).

The control treatment was devoid of fertilizer, leading to significantly low yield characteristics than those fertilized using minerals (T1), 50% mineral fertilizer comprising mushroom spent (T5) and 50% mineral fertilizer with cow manure (T6) (Fig. 6). In contrast, compost and cow and poultry manure treatment had insignificant differences than the control sample. Plant yield was significantly affected by fertilizers. Plant yield concerning tuber count, weight, and plant yield increased due to adequate levels of nitrogen, phosphorus and potassium derived from these inorganic sources. Therefore, plant yield was superior for inorganic fertilizers. Researchers (Kleinkopf et al., 1981; Kader, 2023) indicated a significant correlation between fertilization and yield.
Fig. 6. Yield of plant (kg plant\(^{-1}\)) as affected by organic compost and mineral fertilizers individually or in different combination rates from both
T0: Unfertilized cheek (control); T1: Standard mineral fertilizer; T2: Substances mushroom spent (SMS); T3: Cow + poultry manure; T4: Compost; T5: 1/2 standard mineral fertilizer + substances mushroom spent; T6: 1/2 standard mineral fertilizer + cow with poultry manure; T7: 1/2 standard mineral fertilizer + compost. (CV: Coefficient of variation, LSD: Least Significant Difference).

The outcomes concerning the primary effects of various fertilizers on marketable tuber count are indicated in Fig. 7. The outcomes typically suggest that the mean values of marketable tubers across treatments differed significantly. Marketable tuber count was maximum for 50% mineral fertilizer with compost (T7) treatment, while the lowest value was associated with the control (T0).

Fig. 7. Number of tuber marketable (tuber plant\(^{-1}\)) as affected by organic compost and mineral fertilizers individually or in different combination rates from both
T0: Unfertilized cheek (control); T1: Standard mineral fertilizer; T2: Substances mushroom spent (SMS); T3: Cow + poultry manure; T4: Compost; T5: 1/2 standard mineral fertilizer + substances mushroom spent; T6: 1/2 standard mineral fertilizer + cow with poultry manure; T7: 1/2 standard mineral fertilizer + compost. (CV: Coefficient of variation, LSD: Least Significant Difference).
The outcomes indicate that concurrent use of organic and inorganic fertilizers is extremely significant (than other treatments). It is attributed to superior nutrient levels and the ability to raise soil nutrient concentration through increased biological activity (Pengthamkeerati et al., 2011).

The outcomes of the primary impact of mineral and organic fertilizers on marketable tuber yield per plant are depicted in Fig. 8. The computed outcomes indicate that the mean marketable tuber yield per plant was the highest for T7 (50% mineral fertilizer with compost). Further, the outcomes indicated that the control sample inhibited marketable yield to 0.189 kg plant\(^{-1}\).

![Graph showing marketable tuber yield per plant](image)

Fig. 8. Yield of marketable tuber (kg plant\(^{-1}\)) as affected by organic compost and mineral fertilizers individually or in different combination rates from both

T0: Unfertilized cheek (control); T1: Standard mineral fertilizer; T2: Substances mushroom spent (SMS); T3: Cow + poultry manure; T4: Compost; T5: 1/2 standard mineral fertilizer + substances mushroom spent; T6: 1/2 standard mineral fertilizer + cow with poultry manure; T7: 1/2 standard mineral fertilizer + compost. (CV: Coefficient of variation, LSD: Least Significant Difference).

The results indicate superior marketable tuber count (including plant-specific levels) per hectare. Aligned outcomes were presented by Arzani (2001) and Belhjati et al., (2013). Moreover, it is expected because similar fertilizer use led to the maximum number of marketable tubers, leading to the highest marketable tuber yield. The outcomes are aligned with Shafeek et al., (2001), Arancon et al., (2003), Tu et al., (2006) and Amir et al., (2013).

CONCLUSION

The outcomes of this work indicate that the type of fertilizer used for plants significantly impacts potato yield and vegetative development, including the end-use of the produce.
Concerning yield, the significance of offering the required inorganic substances is critical for improving yield, while timing fertilizer use is also vital. This research indicates that mineral fertilization provided the maximum yield. Mineral fertilizer use also regulates leaf chlorophyll, which is associated with the maturity of the end product. Marketable tuber count and yield per tuber were regulated due to the fertilization sample. Further, the potato plant provided varying outcomes. Overall, the study outcomes suggest that different fertilizer approaches are critical for effectiveness, as indicated by tuber yield.

CONFLICT OF INTEREST

The authors declare no conflicts of interest associated with this manuscript.

REFERENCES

Al-Balikh, K. (2008). The influence of kind and quantity of manure on productivity and quality characteristics for spring potato in Raqqa province. Raqqa research center, Alfurat University, Faculty of Agriculture.

