

INTRODUCTION

Forage legumes such as grass pea and vetches are well adapted to local high altitude environments due to their tolerance and late growth habit. Forage legumes can play an important role in sustaining the productivity of the cereals-based farming system in the Mediterranean countries, especially under semiarid environment. It was found that the forage legume such as vetches and grass pea possess well yield ability, survival to the climatically conditions prevailing the region (Tawfiq,

^{*} Corresponding Author E-mail: <u>jwan.rafat@univsul.edu.iq</u>

2000) (Rafaat, 2001). Grass pea is a winter season crop adapted to the subtropics or temperate regions (Mehta *et al.*, 1994). However, Extreme temperature and drought occurrence during grain filling have been identified as a major source of variation of seed quality characteristic (Agaalikhani *et al.*, 2014). *Lathyrus sativus L.* or grass pea called (khesari in India and Bangladesh, guaya in Ethiopia, san li dow in China, pois carré in France).

One of the factors that affect growth is Plant density. Development and plant growth adversely affects by high plant density, while sub-optimal plant density results in lower yield per unit area but high yield per plant (Singh *et al.*, 1992). Plant density is another important element for higher yield realization through light penetration in crop canopy (Idris, 2008).

The selected line 519 had the highest biological, 4681 kg/ha, and was among the best line in seeds yield, 885 kg/h. Several other selection lines were also very productive both in seed and biological yields such as 520 and 531, while the lines 522 and 527 had high biological yields only. These lines have a good potential as winter forage legumes under Rabi condition. The selected lines 508, 528 and 530 have a good potential for seed yield only (Al-Doss *et al.*, 1998).

In many Asian and African countries Grass pea seeds are common staple, food grass peas seeds are used in many dishes, as a accompanies the traditional (local flatbread) (Campbell, 1997).. Lathyrus (Fabacea; Papilionoideae) has importance as traditional foodstuffs in many cultures worldwide and is the largest genus in tribe Vicieae (Kenicer *et al.*, 2005; Sammour *et al.*, 2007).. Grass pea is an annual cool-season legume, known as common chickling (Laghari *et al.*, 2016). . Grass pea is significant crop treasured for their place in crop rotations and as food and feed sources. Grass pea has high production potential, drought and salt tolerance, disease resistance of stored grains to pests (Agaalikhani *et al.*, 2014).Under adverse environmental conditions, easily grown on marginal land it is a popular crop in subsistence. The objective of this research was to study the effect of plant population density (PPD)on some line of grass pea. To evaluate some lines of *lathyrus sativus* L. for growth and seed yield ,and to select the line that are more adaptable to the regon of Sulaimani .

MATERIALS AND METHODS

This study was carried out in Sulaymaniyah region at two locations (Qlyasan and Kanipanka), during the winter season of 2017-2018. Four Grass pea (*Lathyrus sativus*) Lines (IF003, IF133, IF102, IF067) were used to study the effect of plant density and Lines on growth characters and yield components . The seeds were sown for Agricultural Research in the Dry Areas ICARDA were selected for cultivation in 5/12/2017, 6/12/2017 for both location respectively. And four different plant densities were applied (80Kg/h, 100Kg/h, 120Kg/h, and 140Kg/h).

The experiments were designed in Factorial conducted in Randomized Complete Block Design with three replication according to the procedure outlined by(Steel and Torrie, 1986). Plots consisted of four rows, the row was (2) m long with a spacing of (0.25) m between the rows. All possible comparisons among the means would carry out by using L.S.D test (Least Significant Difference) at a significant level of 5%. The following characters were determined.

Growth traits

- Plant height (cm)
- No. of Days to %50 flowering
- No. of Days to maturity
- No. of Branches/ plant
- leaf dry weight (g)
- Stem dry weight (g)
- Leaf stem ratio percent
- No. of bacterial nodules/plant

Seed Yield and its components

- No. of pods/ plant
- No of seeds/ pods
- Pod length (cm)
- weight of seeds/pod (g)
- 100 seed weight (g)
- Seed yield (Kg/ha)
- Biological yield (Kg/ha)
- Harvest index: measured by separating the seeds from straw yield and weight to calculate the harvest index according to the following equation:

Harvest index = <u>Total seed yield</u> ×100 Total biological yield+Total seed yield

RESULTS AND DISCUSSION

Data represent in Table 1a and Apendix 1 illustrate the means of some growth and forage characters for grass pea lines at Qlyasan locations and their average. At Qlysan location there are highly significant differences among lines for the plant height, leaf dry weight, stem dry weight, leaf stem ratio, and number of bacterial nodules/plant, but for days to%50 flowering was significant while the differences were not significant for number of branches/plant and days to maturity. At Kanipaka location the difference among lines were highly significant for the days to maturity, leaf dry weight and number of bacterial nodules/plant while it is significant for the character days to %50 flowering and not significant for the rest. As the average of both locations there were highly significant differences among lines due to the characters Plant height, days to %50 flowering, leaf dry weight, and number of bacterial nodules/plant, but significant difference was noticed among lines due to the character set more were not significant.

At Qlyasan location the line number 1 produced maximum value for the character leaf stem ratio reached 1.756, while exhibited the lowest values for the character plant height, leaf dry weight, number of bacterial nodules/plant and reached 39.42 cm, 0.695 g and 14.08 respectively. Line number 2 had the highest values for the character plant height reached 58.22 cm. The highest values for the character number of bacterial nodules/plant produced by line number 3 recorded 16.34 respectively and also produced the lowest values for the days to %50 flowering, and stem dry weight with 130.400 days and 0.805 g respectively. The highest value due to the character days to %50 flowering, leaf dry weight and stem dry weight were 131.9 days, 1.231g and 1.306 g respectively recorded by line number 4, and also recorded the lowest value for the leaf stem ratio with 0.375 see table 1a.

At Kanipanka location it was observed that line number 1 produced the lowest value for all characters except the character days to %50 flowering with 159.18, 1.526, and 15.617 for the days to maturity, leaf dry weight and number of bacterial nodules/plant respectively. Line number 2 showed the highest value for the character days to %50 flowering reached 120.187 days. Line number 3 exhibited the highest value due to the character number of bacterial nodules/plant with 17.650, while it recorded the lowest value for the days to %50 flowering with 118.822 days. The highest value for most characters recorded by line number 4 including the characters Plant height, days to maturity, leaf dry weight and stem dry weight reached 63.603cm, 164.583 days, 2.248g and 2.263g respectively.

Data in table 1c represent the value for grass pea lines as the average of both locations. The lowest value for the characters recorded by line number 1 including the characters Plant height, leaf dry weight; stem dry weight and number of bacterial nodules/plant with 48.21 cm, 1.111g, 1.243g and 14.848 respectively. Line number 3 produced maximum values for the character number of branch/ plant and number of bacterial nodules /plant reached 6.189 and 16.990 respectively, and

showed the lowest value for the character days to %50 flowering with 124.600 days. The highest value for most characters recorded by line number 4 including the character plant height, days to %50 flowering, leaf dry weight, stem dry weight and leaf stem ratio with 60.55cm, 126.1days, 1.739g, 1.784g and 2.32 respectively and recorded the lowest value for the character number of branch/plant with 5.595 branches. There are many factors that affect productivity in agriculture these factors are plant species and cultivars, agronomical technics, soil and climate factors. Even though all the conditions can be provided, yield level greatly depends on climate conditions in especially dry agricultural areas (Albayrak and TÖngel, 2006).

 Table (1a) Means of growth and forage characters for grass pea lines at Qlyasan locations and their average

	Qlyasan Location											
Line	Plant height (cm)	No. of branch/ plant	Days to %50 flowering	Days to maturity	Leaf dry weight (g)	Stem dry weight (g)	Leaf stem ratio	No. of bacterial nodules/ plant				
L.1	39.420	5.810	130.500	177.270	0.695	1.034	1.756	14.080				
L.2	58.220	6.080	131.000	180.262	1.128	1.205	0.746	14.410				
L.3	53.130	6.120	130.400	178.706	0.918	0.805	0.492	16.340				
L.4	57.510	5.640	131.900	172.100	1.231	1.306	0.375	15.090				
LSD (p≤0.05)	4.832	n.s	1.03	n.s	0.136	0.251	0.135	0.877				

n.s not significant L.1 means IF003, L.2 means IF133, L.3 means IF102, and L.4 means IF067.

 Table (1b) Means of growth and forage characters for grass pea lines at Kanipanka Location and their average

	Kanipanka Location											
Line	Plant height (cm)	No. of branch/ plant	Days to %50 flowering	Days to maturity	Leaf dry weight (g)	Stem dry weight (g)	Leaf stem ratio	No. of bacterial nodules/ plant				
L.1	57.000	5.458	119.637	159.189	1.526	1.453	2.388	15.617				
L.2	58.217	5.725	120.187	162.576	2.165	1.774	2.709	15.933				
L.3	60.970	6.258	118.822	163.102	1.935	1.924	2.808	17.650				
L.4	63.603	5.550	120.165	164.583	2.248	2.263	2.489	16.375				
LSD (p≤0.05)	n.s	n.s	0.882	1.097	0.307	n.s	n.s	0.956				

n.s not significant

Table (1c) Means of growth and forage characters for grass pea lines at Average of both locations.

	Average of both Locations											
Line	Plant height (cm)	No. of branch/ plant	Days to %50 flowering	Days to maturity	Leaf dry weight (g)	Stem dry weight (g)	Leaf stem ratio	No. of bacterial nodules/ plant				
L.1	48.210	5.630	125.100	168.200	1.111	1.243	2.072	14.848				
L.2	58.218	5.902	125.600	171.400	1.647	1.489	1.727	15.171				
L.3	57.050	6.189	124.600	170.900	1.426	1.364	1.650	16.990				
L.4	60.550	5.595	126.100	168.300	1.739	1.784	2.320	15.732				
LSD (p≤0.05)	7.84	n.s	0.664	n.s	0.165	0.329	n.s	0.635				

n.s not significant

Data in Table 2a explain the effect of seeding rate on some growth and forage characters for grass pea. At Qlyasan location the effect of seeding rate was highly significant on all characters except the characters days to %50 flowering and days to maturity which were not significant ,while at

Kanipanka location the effect of seeding rate was highly significant on the characters days to maturity leaf dry weight and leaf stem ratio and it was significant on the characters plant height, number of branch/plant and days to %50 flowering while, it non-significantly affected the characters stem dry weight and number of bacterial nodules/plant .

At Qlyasan location the application of 80 kg/h produce the lowest value for most characters excluding the number of branch/ plant, days to maturity, leaf dry weight, stem dry weight and number of bacterial nodules/plant with 4.858, 171.660, 0.603, 0.640 and 14.075 respectively. But, using 100 kg/h gave maximum value for the character plant height and leaf dry weight reached 56.808 cm and 1.142g respectively. However, the lowest value for character days to %50 flowering recorded 130.500 days. Maximum numbers of days to maturity produced by using 120 kg/h reached 181.230 days but, minimum value for the character leaf stem ratio recorded by the same level with 0.486. The highest value of most characters produced as 140 kg/h was used such as the number of branch/plant, stem dry weight, leaf stem ratio and number of bacterial nodules/plant reached 6.925, 1.522, 1.349, and 17.225 respectively. While the lowest value recorded by the application 140 kg/h for the character plant height with 47.294 cm.

At Kanipanka location, using 80kg/h recorded the lowest value for the leaf dry weight, leaf stem ratio and number of bacterial nodules/ plant reached 1.198g, 1.768, and 15.142 respectively, also the application 100kg/h for the number of branch/plant, days to maturity and stem dry weight was recorded with 5.325, 158.953, and 1.009 respectively. Using 120kg/h seeding rate gave the highest values of the plant height, days to %50 flowering and days to maturity were recorded 62.933, 120.214 and 165.609 respectively. The highest value for most characters produced as 140kg/h seeds were used including the number of branch/plant, leaf dry weight, leaf stem ratio and number of bacterial nodules/plant reached 6.450, 2.986g, 3.991 and 18.117 respectively.

However, the lowest value for plant height and days to %50 flowering recorded as 140kg/h was used 57.825cm and 119.016days respectively. As the average of both locations the lowest value for most characters such as number of branch/plant, leaf dry weight, leaf stem ratio and number of bacterial nodules/plant were recorded when 80kg/h was used with 5.100, 0.901g, 1.205 and 14.610, but using 100 kg/h recorded the highest value for plant height reached 59.00cm; however, the lowest value recorded by using 100kg/h for the character days to %50 flowering and stem dry weight with 124.994days and 0.903g. Using 120kg/h seeding rate the highest value of the days to %50 flowering and days to maturity were exhibited 125.543 and 173.419days respectively. The highest value for most characters were reached as 140kg/h seed rate was used including the characters number of branch/ plant, leaf dry weight, stem dry weight, leaf stem ratio and number of branch/ plant, leaf dry weight, stem dry weight, leaf stem ratio and number of branch/ plant height reached 52.600 cm table 3c. Increasing crop seeding rates can hasten and increase resource use, and thereby reduce the negative effect of weeds when herbicide use is curtailed (Berkowitz, 1988, Mohler, 1996).

unc	and then average										
			Qlyas	an Location							
Seeding rate	Plant height (cm)	No. of branch/ plant	Days to %50 flowering	Days to maturity	Leaf dry weight (g)	Stem dry weight (g)	Leaf stem ratio	No. of bacterial nodules/ plant			
80kg/h	51.910	4.858	130.680	171.660	0.603	0.640	0.643	14.075			
100Kg/h	56.808	5.683	130.500	177.660	1.142	0.796	0.890	14.158			
120Kg/h	52.267	6.183	130.870	181.230	1.089	1.393	0.486	14.476			
140kg/h	47.294	6.925	131.820	177.760	1.138	1.522	1.349	17.225			
LSD (p≤0.05)	4.832	7.32	n.s	n.s	0.136	0.251	0.135	0.877			

 Table (2a) Effect of seeding rate on growth and forage characters of grass pea at Qlyasan locations and their average

n.s not significant

Table (2b) Effect of seeding rate on	growth and forage characters	s of grass pea at Kanipanka locations
and their average		

	Kanipanka Location										
Seeding rate	Plant height (cm)	No. of branch/ plant	Days to %50 flowering	Days to maturity	Leaf dry weight (g)	Stem dry weight (g)	Leaf stem ratio	No. of bacterial nodules/ plant			
80kg/h	58.334	5.350	120.087	162.143	1.198	1.178	1.768	15.142			
100Kg/h	61.208	5.325	119.493	158.953	2.291	1.009	2.638	16.350			
120Kg/h	62.933	5.867	120.214	165.609	1.399	2.264	1.997	15.967			
140kg/h	57.825	6.450	119.016	162.745	2.986	2.963	3.991	18.117			
LSD (p≤0.05)	6.179	0.823	0.882	1.097	0.307	n.s	1.206	n.s			

 Table (2c) Effect of seeding rate on growth and forage characters of grass pea at Average of both locations.

	Average of both Locations										
Seeding rate	Plant height (cm)	No. of branch/ plant	Days to %50 flowering	Days to maturity	Leaf dry weight (g)	Stem dry weight (g)	Leaf stem ratio	No. of bacterial nodules/ plant			
80kg/h	55.910	5.100	125.384	166.901	0.901	0.909	1.205	14.610			
100Kg/h	59.000	5.500	124.994	168.306	1.717	0.903	1.760	15.250			
120Kg/h	57.600	5.860	125.543	173.419	1.244	1.393	1.241	15.220			
140kg/h	52.600	6.450	125.415	170.252	2.062	2.243	2.670	17.670			
LSD (p≤0.05)	3.84	0.54	n.s	n.s	0.165	0.329	0.594	0.635			

n.s not significant

Data represent in Table 3a illustrate the interaction effect between lines and seeding rate on some growth and forage characters for grass pea at both locations. At Qlyasan location the interaction effect was highly significant for the plant height, days to %50 flowering, leaf dry weight, leaf stem ratio and number of bacterial nodules/plant, while it was significant for the character stem dry weight and not significant for the character number of branches/plant and days to maturity.

The highest value for the character plant height was 71.533cm produced by the interaction between line number 3 and 100kg/h. While the lowest value was 27.843 cm exhibited by the association between line number 1 and 140kg/h. Concerning to the character days to %50 flowering the values were restricted between 128.400 days for line number 4 coupled with 120 kg/h to 134.067 days for also line number 4 associated with 140 kg/h. Regarding to the character leaf dry weight the highest value was 1.767g produced by the interaction between verity number 2 under 120kg/h while the lowest value was 0.087g recorded by the association between line number 1 with 80 kg/h.

Concerning to the character stem dry weight the values ranged between 0.5g for the interaction between line number 3 with 80kg/h to 1.940g recorded by the interaction between line number 4 under 140kg/h. The maximum value for the character leaf stem ratio was 3.573 recorded by the association between line number 1 under 140kg/h, while the lowest value was 0.133 for the association between line number 4 under 120kg/h. The interaction between line numbers 3 under 140kg/h produced the highest value for this character number of bacterial nodules/plant was 19.633. But, the lowest recorded by line number 1 coupled with 80kg/h was 11.667. From the same table it was observed that the interaction effect between lines and seeding rates were highly significant for the days to %50 flowering, days to maturity, leaf dry weight and number of bacterial nodules/plant, while it was not significant for the rest at Kanipanka location. Regarding to the character days to %50 flowering the values restricted between 116.613days for the interaction between lines number 3 with 140kg/h to 121.250 days recorded by the interaction between line number 2 coupled with 120kg/h.

Table (3a) Effect of interaction between lines and seeding rates on some growth and forage characters	,
for grass pea at Olyasan Location	

Qlyasan Location										
Seeding rate ×Line	Plant height (cm)	No. of branch/ plant	Days to %50 flowering	Days to maturity	Leaf dry weight (g)	Stem dry weight (g)	Leaf stem ratio	No. of bacterial nodules/plant		
L1.*80kg/h	44.833	4.230	129.437	176.023	0.087	0.507	0.790	11.667		
L1. × 100kg/h	40.567	5.300	131.343	175.860	0.723	0.640	1.733	14.267		
L1. × 120kg/h	44.433	6.630	129.627	180.510	0.837	1.330	0.927	11.933		
L1. × 140kg/h	27.843	7.067	131.550	176.690	1.133	1.660	3.573	18.467		
L2. × 80kg/h	59.833	5.200	130.197	182.173	0.460	0.773	0.603	17.433		
L2. × 100kg/h	55.833	5.667	128.473	179.140	1.160	0.760	0.823	13.067		
L2. × 120kg/h	61.200	6.600	132.700	182.013	1.767	1.433	0.577	14.667		
L2. × 140kg/h	56.000	6.867	132.733	177.713	1.123	1.853	0.980	12.467		
L3. × 80kg/h	54.667	5.900	131.430	181.490	0.937	0.500	0.560	13.167		
L3. × 100kg/h	71.533	5.860	128.500	176.730	1.083	0.913	0.693	14.033		
L3. × 120kg/h	40.200	6.230	132.767	180.877	0.923	1.173	0.310	18.533		
L3. × 140kg/h	55.130	6.460	128.913	175.727	0.727	0.633	0.403	19.633		
L4. × 80kg/h	57.300	4.100	131.667	146.937	0.927	0.780	0.617	14.033		
L4. × 100kg/h	59.333	5.900	133.663	178.897	1.600	0.870	0.310	15.267		
L4. × 120kg/h	63.233	5.260	128.400	181.504	0.830	1.633	0.133	12.733		
L4. × 140kg/h	50.200	7.300	134.067	180.920	1.567	1.940	0.440	18.333		
LSD (p≤0.05)	9.664	n.s	2.061	n.s	0.272	0.502	0.27	1.755		

Concerning to the character days to maturity the values restricted between 156.963 days recorded by the interaction line number 3 and 100 kg/h to 170.763 days for the interaction between line number 4 and 120kg/h. Maximum value for the character leaf dry weight was 3.623g recorded by the association between line number 1 coupled with 140kg/h, while the lowest values was 0.210g recorded by the association between line number 1 couple with 80kg/h. The maximum value for the character number of bacterial nodules/plant recorded 19.967 by the association line number 3 and 120kg/h while, the lowest was 13.00 by the interaction of line number 1 and 80kg/h.

The effect of the interaction between lines and seeding rates on growth and forage characters as the average of both locations represent in the table 4.3b. It was noticed that the interaction effect was highly significant for the characters days to %50 flowering, leaf dry weight, leaf stem ratio and number of bacterial nodules/plant, but for the rest it was not significant .The highest values for the characters days to %50 flowering, leaf dry weight were 127.260 days and 2.520g recorded by the interaction between line number 4 and 140kg/h, while the lowest values were 122.763days and 0.148g respectively recorded by the association line number 3 with 140kg/h for the character days to %50 flowering and line number 1under 80kg/h for the character leaf dry weight respectively.

Concerning to the character leaf stem ratio the values were restricted between 0.483 for the interaction line 4 coupled with 120kg/h to 4.362 recorded by the interaction between line number 1 and coupled with 140kg/h. Regarding to the character number of bacterial nodules/plant the values ranged between 9.730 recorded by the interaction between line number 4 under 140kg/h to 19.80

recorded by the association of line number 3 and coupled with 120kg/h. Seeding rate is one of the elements that affect yield and growth. High plant population adversely affects development and plant growth, while suboptimal plant population results in high yield per plant but lower yield per unit area (Singh *et al.*, 1992). Results that describe yield response to plant population (Al-Rifaee *et al.*, 2004).

	Kanipanka Location										
Seeding rate *Line	Plant height (cm)	No. of branch/ plant	Days to %50 flowering	Days to maturity	Leaf dry weight (g)	Stem dry weight (g)	Leaf stem ratio	No. of bacterial nodules/plant			
L1.*80kg/h	58.930	5.733	120.280	157.570	0.210	1.447	0.417	13.000			
L1. × 100kg/h	53.000	5.300	118.403	161.627	1.050	0.557	2.205	16.167			
L1. × 120kg/h	58.930	5.530	120.470	157.890	1.220	1.633	1.776	13.467			
L1. × 140kg/h	59.130	5.267	119.387	159.670	3.623	2.177	5.152	19.833			
L2. × 80kg/h	59.830	5.267	119.437	167.263	0.853	1.207	1.084	18.367			
L2. × 100kg/h	55.830	5.267	120.450	158.263	2.530	0.880	3.432	14.267			
L2. × 120kg/h	61.200	5.833	121.250	165.820	1.923	1.910	3.232	16.500			
L2. × 140kg/h	56.000	6.533	119.610	158.957	3.353	3.100	3.090	14.600			
L3. × 80kg/h	52.580	5.600	119.523	162.890	1.833	0.877	2.822	14.130			
L3. × 100kg/h	70.830	5.660	120.447	156.963	3.033	1.383	2.493	17.500			
L3. × 120kg/h	61.170	6.630	118.704	167.963	1.393	2.373	2.145	19.967			
L3. × 140kg/h	62.000	7.133	116.613	164.590	1.480	3.063	3.770	19.000			
L4. × 80kg/h	62.000	4.800	121.100	160.847	1.897	1.183	2.749	15.067			
L4. × 100kg/h	65.160	5.067	118.673	158.960	2.550	1.217	2.421	17.467			
L4. × 120kg/h	70.430	5.467	120.433	170.763	1.060	3.140	0.834	13.933			
L4. × 140kg/h	56.830	6.867	120.453	167.763	3.487	3.513	3.951	19.030			
LSD (p≤0.05)	n.s	n.s	1.764	2.195	0.615	n.s	n.s	1.911			

Table (3b) Effect of interaction between lines and seeding rates on some growth and forage characters for grass pea at Kanipanka locations.

n.s not significant

Table (3c) Effect of interaction between lines and seeding rates on some growth and forage characters
for grass pea at Average of both locations

		U	Average of	f both Locatio	ons			
Seeding rate [×] Line	Plant height (cm)	No. of branch/ plant	Days to %50 flowering	Days to maturity	Leaf dry weight (g)	Stem dry weight (g)	Leaf stem ratio	No. of bacterial nodules/plant
L1.×80kg/h	51.880	4.980	124.860	166.790	0.148	0.977	0.603	12.330
L1. × 100kg/h	46.780	5.300	124.873	168.740	0.880	0.598	1.696	15.210
L1. × 120kg/h	51.681	6.080	125.048	169.200	1.028	1.480	1.351	12.700
L1. × 140kg/h	43.480	6.167	125.468	168.180	2.370	1.910	4.362	19.150
L2. × 80kg/h	59.830	5.230	124.817	174.718	0.650	0.990	0.843	15.170
L2. × 100kg/h	55.831	5.467	124.461	168.701	1.840	0.820	2.127	14.460
L2. × 120kg/h	61.200	6.210	126.970	173.910	1.845	1.670	1.904	14.480
L2. × 140kg/h	56.000	6.700	126.171	168.335	2.230	2.470	2.035	13.880
L3. × 80kg/h	53.620	5.750	125.476	172.190	1.380	0.870	1.691	14.080
L3. × 100kg/h	71.181	5.760	124.473	166.840	2.050	1.148	1.593	18.010
L3. × 120kg/h	50.685	6.430	125.735	174.420	1.150	1.770	1.227	19.800
L3. × 140kg/h	58.560	6.790	122.763	170.150	1.103	1.840	2.086	16.510
L4. × 80kg/h	59.650	4.450	126.383	153.892	1.412	0.980	1.680	15.160
L4. × 100kg/h	62.240	5.483	126.168	168.928	2.070	1.040	1.360	15.100
L4. × 120kg/h	66.830	5.363	124.410	176.133	0.940	2.380	0.483	16.130
L4. × 140kg/h	53.515	7.080	127.260	174.341	2.520	2.720	2.195	9.730
LSD (p≤0.05)	n.s	n.s	1.328	n.s	0.437	n.s	1.189	1.271

Data in Table 4; illustrate the effect of locations on growth and forage characters of grass pea the effect of locations was highly significant for the characters days to maturity, leaf dry weight, stem dry weight, leaf stem ratio and number of bacterial nodules/plant, while it was significant for the character plant height and not significant for the rest. It was observed from this table the exceeding second location for most characters compared to the first location reached 15.36, 98.990, 71.29, 209.500 and 9.4% for the characters plant height, leaf dry weight, stem dry weight, leaf stem ratio and number of bacterial nodules/plant respectively. But regarding the character days to maturity, Qlyasan location predominated Kanipanka location by 9.259%. These results confirm the suitability of the second location to grow this crop compare to first location.

LSD (p≤0.05)	7.34	n.s	n.s	5.69	0.153	0.45	0.943	0.422
Kanipanka	60.080	5.740	119.703	162.000	1.970	1.850	2.600	16.390
Qlyasan	52.080	5.910	131.000	177.000	0.990	1.080	0.840	14.980
Locations	Plant height (cm)	No. of branch/ plant	Days to %50 flowering	Days to maturity	Leaf dry weight (g)	Stem dry weight (g)	Leaf stem ratio	No. of bacterial nodules/plant

Table	(A) Effect of	flagetians of	 	famaaa	al	of ano an	

Data represent in Table 5a and Apendix 2 illustrate the averages of seed yield and it is components for grass pea at both locations and their average due to genotypes. At Qlyasan location the differences among lines were highly significant for the characters 100 seed weight, seed yield, biological yield and harvest index, while it was significant for the number of pods/plant and not significant for the rest. At Knipanka location the differences among lines were highly significant 100 seed weight, seed yield, biological yield and harvest index only and not significant for the rest. As the average of both locations the difference among lines were highly significant for all characters except Weight of seeds/pod(g) was significant but pod length and number of seeds/ pod were not significant.

At Qlyasan location line number 2 produced maximum values for the number of seeds/pod, seed yield and harvest index recording 3.260 pod, 5712.721kg/h and 0.457 respectively. Line number 3 recorded the highest value for pod length, 100 seed weight and biological yield producing 3.258cm, 12.790g and 14232.150kg/h respectively. The highest values for the character number of pods/plant and Weight of seeds/pod (g) were 33.400 pods 0.490g respectively, for line number 4. The lowest value for the characters 100 seed weight, seed yield and harvest index were 9.503, 3519.466 kg/h and 0.290 recorded by line number 4. Line number 1 recorded the lowest value for the number of seeds/pod and biological yield with 30.200 and 11437.360 respectively. The character number of seeds/pod and Weight of seeds/pod (g) indicated minimum value with 2.883 and 0.373 respectively and the lowest value due to the character pod length was 3.035. At Kanipanka location the highest value due to the number of seeds/pod seed weight, seed yield, biological yield and harvest index were 3.411, 12.240, 1.023, 15472.981 and 0.509 respectively exhibited by line number 3. Line number 4 recorded the lowest value for pod length, seed yield, biological yield and harvest index with 3.321 cm, 4894.647 kg/h, 14352.633 kg/h and 0.340 respectively. The lowest value for the number of pods/plant, number of seeds/pod Weight of seeds/pod (g) and100 seed weight were 31.502, 3.068g, and 8.881 respectively recorded by line number1 table 5b. As the average of both locations line number 3 recorded the highest value for the characters 100 seed weight, seed yield, biological yield and harvest index reached 12.520, 6243.940 kg/h, 14852.560 kg/h and 0.427 respectively.

Maximum value for number of pods/plant, number of seeds/pod and Weight of seeds/pod (g) were 33.710, 3.206 and 0.480 g recorded by line number 4 respectively. But minimum pod length was obtained by variety number 1.The lowest value for the characters number of pods/plant, number of seeds/pod, Weight of seeds/pod (g), 100 seed weight and biological yield were 30.850, 0.355 g, 9.296 and 12895.690 kg/h respectively recorded by line number 1, while line number 4 produced minimum values for the characters pod length, seed yield and harvest index with 3.248cm, 4207.146 kg/h and 0.315 respectively. Table 5c. Results indicated that as plant population increases, lower harvest index obtained. This could be due to the increase in biological yield as the number of plants per unit area increased with no significant increases in seed yield leads to lower harvest indexes. With results of (Dantuma, 1983) high plant population preferable early full canopy development and increased light interception (Al-Rifaee *et al.*, 2004). Agung and Mcdonald (1998) who revealed that for any given cultivar, the average number of seeds/pod is a relatively stable character.

	average							
				Qlyasan Loc	cation			
Line	No. of pods /plant	Pod length (cm)	No. of seeds/ pod	Weight of seeds/pod (g)	100 seed weight(g)	Seed yield kg /h	Biological yield(kg/ h)	Harvest index
L.1	30.200	3.189	2.955	0.390	9.710	5097.847	11437.360	0.417
L.2	31.800	3.035	3.260	0.433	10.100	5712.721	11804.130	0.457
L.3	31.900	3.258	2.883	0.373	12.790	4816.856	14232.150	0.344
L.4	33.400	3.175	3.109	0.490	9.503	3519.466	12185.970	0.290
LSD (p≤0.05)	1.974	n.s	n.s	n.s	0.623	358.47	726.768	0.039

 Table (5a) Means of seed yield and its components of grass pea lines at Qlyasan locations their average

n.s not significant

 Table (5b) Means of seed yield and its components of grass pea lines at Kanipanka locations and their average

	Kanipanka Location											
Line	No. of pods /plant	Pod length (cm)	No. of seeds/ pod	Weight of seeds/pod (g)	100 seed weight(g)	Seed yield kg /h	Biological yield(kg/ h)	Harvest index				
L.1	31.502	3.443	3.068	0.319	8.881	5667.014	14354.027	0.395				
L.2	33.001	3.566	3.146	0.392	9.301	4983.554	14637.460	0.345				
L.3	32.904	3.356	3.411	0.420	12.240	7671.023	15472.981	0.509				
L.4	34.070	3.321	3.303	0.470	9.123	4894.647	14352.633	0.340				
LSD (p≤0.05)	n.s	n.s	n.s	n.s	0.707	480.886	531.86	0.37				

n.s not Significant

Table (5c) Means of seed yield and its components of grass pea lines at both locations and their average

			Ave	rage of both	Locations			
Line	No. of pods	Pod length	No. of seeds/	Weight of seeds/pod	100 seed weight(g)	Seed yield kg /h	Biological yield(kg/ h)	Harvest index
L.1	/plant 30.850	(cm) 3.316	pod 3.011	(g) 0.355	9.296	5382.430	12895.690	0.406
L.2	32.400	3.300	3.203	0.413	9.700	5348.137	13220.790	0.401
L.3	32.390	3.307	3.147	0.396	12.520	6243.940	14852.560	0.427
L.4	33.710	3.248	3.206	0.480	9.313	4207.146	13269.300	0.315
LSD (p≤0.05)	1.941	n.s	n.s	0.074	0.461	293.728	441.035	0.026

n.s not significant

Data in Table 6a explain the effect of seeding rate on seed yield and it is components for grass pea at both locations and their average. At Qlyasan location the characters seed yield, biological yield and harvest index responded high significantly to the effect of seeding rate, also at Knipanka location were high significant difference among the characters seed yield and biological yield observed by effecting of seeding rate while as the average of both locations the effect of seeding rate was highly significant for all characters except 100 seed weight which was significant and not significant for the rest .The application of 80kg/h produced the highest value for the character harvest index at both locations with 0.420. Maximum value of seed yield and biological yield at Knipanka locations recorded by the application of 140 kg with 7037.310kg/h and 15428.200kg/h respectively at the first location and 7341.477 kg/h and 19094.823 kg/h respectively at the second location. As the average of both locations using 140 kg/h seeds produced maximum values for the number of pods/plant, weight of seed/pod, seed yield biological yield and harvest index with 33.940, 0.462g, 6864.39 kg/h 3, 17261.489 and 0.426 respectively, while the lowest value for the number of pods/plant, 100 seed weight, seed yield, biological yield and harvest index recorded by the application of 80 kg/h with

31.220, 9.983g, 3166.305kg/h,8703.368kg/h and 0.357 respectively. Crop yield is commonly proportional to total biomass production (Pilbeam *et al.*, 1992, Loss and Siddique, 1997). Concerning the effect of plant population on biological yield the higher plant populations of 100 and 150 plants/m produced the greater amounts of biomass table 6c. This could be attributed to the increase in the number of plants per unit area, and the associated increase in plant height. Similar results were reported by Castro Coelho and Aguiar Pinto (1989), who observed that at the final harvest, the dry matter yield of above-ground parts increased with increasing plant population.

 Table (6a) Effect of seeding rates on seed yield and its components of grass pea at Qlyasan locations and their average

	Qlyasan Location											
seeding rate plant/m2	No. of pods /plant	Pod length (cm)	No. of seeds/ pod	Weight of seeds/pod (g)	100 seed weight(g)	Seed yield (kg /h)	Biological yield (kg/ h)	Harvest index				
80kg/h	30.810	3.275	3.065	0.445	10.480	2329.640	7832.951	0.294				
100Kg/h	31.960	3.065	3.038	0.388	10.460	4260.705	12300.130	0.350				
120Kg/h	31.180	3.110	3.162	0.403	10.980	5519.420	14098.355	0.399				
140kg/h	33.270	3.206	2.942	0.450	10.170	7037.310	15428.200	0.466				
LSD (p≤0.05)	n.s	n.s	n.s	n.s	n.s	358.47	726.768	0.039				

n.s not significant

 Table (6b) Effect of seeding rates on seed yield and its components of grass pea at Kanipanka locations and their average

	Kanipanka Location											
seeding rate plant/m2	No. of pods /plant	Pod length (cm)	No. of seeds/ pod	Weight of seeds/pod (g)	100 seed weight(g)	Seed yield (kg /h)	Biological yield (kg/ h)	Harvest index				
80kg/h	31.630	3.447	3.152	0.404	9.484	4002.972	9573.785	0.420				
100Kg/h	32.940	3.222	3.165	0.368	9.949	5360.705	13716.805	0.389				
120Kg/h	32.280	3.576	3.314	0.355	10.220	6511.085	16431.688	0.394				
140kg/h	34.610	3.441	3.296	0.474	9.893	7341.477	19094.823	0.385				
LSD (p≤0.05)	n.s	0.43	n.s	n.s	n.s	454.115	531.86	0.37				

n.s not significant

 Table (6c) Effect of seeding rates on seed yield and its components of grass pea at Average of both locations

	Average of both Locations											
seeding rate plant/m2	No. of pods /plant	Pod length (cm)	No. of seeds/ pod	Weight of seeds/pod (g)	100 seed weight(g)	Seed yield (kg /h)	Biological yield (kg/ h)	Harvest index				
80kg/h	31.220	3.360	3.108	0.425	9.983	3166.305	8703.368	0.357				
100kg/h	32.440	3.140	3.101	0.378	10.205	4810.705	13008.472	0.370				
120Kg/h	31.730	3.340	3.230	0.379	10.605	6015.251	15265.022	0.396				
140kg/h	33.940	3.323	3.118	0.462	10.033	6864.393	17261.489	0.426				
LSD (p≤0.05)	1.941	n.s	n.s	n.s	0.461	529.472	441.035	0.26				

n.s not significant

Data represent in Table 7a illustrate the effect of the interaction between lines and seeding rates and seed yield and it is components for grass pea at both locations and their average. At Qlyasan location the characters 100 seed weight, seed yield, biological yield and harvest index respond high significantly this effect while the character number of pods/plant respond significantly to this effect and not significant to the rest. The highest value for the number of pods/plant was 35.680 recorded by the interaction of line number 4 with the application of 100 kg/h. The highest value for the character No. of pods /plant 100 seed weight, seed yield, biological yield and harvest index were 35680g, 13.350g, 9153.597 kg/h, 18550.908 and 0.631 recorded by the interaction of line number 4 with 120 kg/h, line number 2 with 140kg/h line number 1 with 140 kg/h and line number 3 with 140kg/h respectively. The lowest value of the number of pods/plant, seed

yield, biological yield and harvest index were 27.070, 1540.080, 7083.940 and 0.226 recorded by the interaction of line number 1 with 80 kg/h but the lowest value of 100 seed weight was 8.083g recorded by interaction between line numbers 4 with 80kg/h.

At Kanipanka location the interaction effect was significant for the character number of pods/plant, seed yield and biological yield, but highly significant for the character harvest index and not significant for the rest. The highest value due to the character number of pods/plant, seed yield, biological yield and harvest index were 36.990, 9340.880 kg/h, 19550.908 kg/h and 0.613 recorded by the interaction of line number 4 with 100 kg/h, line number 3 with 140kg/h and line number 3 with 80kg/h respectively, but the lowest value for the character number of pods/plant was 28.720 recorded by the interaction line number 1 coupled with 120 kg/h and for the character harvest index it was 0.299 recorded by the interaction of line of line number 4 coupled with 100kg/h seeds, and the lowest value for seed yield and biological yield were 3316.273kg/h exhibited by the interaction line number 1 with 80kg/h table8b.

The interaction between lines and seeding rates as the average of both locations represent in the table 8 This effect was highly significant for the character number of pods/plant, Weight of seeds/pod (g), seed yield biological yield and harvest index but it was not significant for the rest .The highest value for the character number of pods/plant was 36.340 recorded by the interaction between line number 4 with the application of 100 kg/h, while for the character Weight of seeds/pod (g) the highest value was 0.610g recorded by the interaction of line number 2 under 140 kg/h. Maximum value for the characters seed yield and biological yield was 7849.210 and 19050.910 kg/h recorded by the interaction line number 3 with using 140kg/h. The highest value for the character harvest index was 0.500 produced by the interaction between line number 3 and 80kg/h seeds. The lowest value for the number of pods/plant, seed yield and biological yield were 28.030, 2428.410 kg/h, and 8250.610 recorded by the interaction between line number 4 coupled with using 100 kg/h but the lowest value for harvest index was 0.280 recorded by line number 4 with 100kg/h table 7c. Plant populations had significant effect on harvest indexes.

			Qlyasa	n Location				
Seeding rate ×Line	No. of pods /plant	Pod length (cm)	No. of seeds/ pod	Weight of seeds/pod(g)	100 seed weight (g)	Seed yield (kg /h)	Biological yield (kg/ h)	Harvest index
L1.×80kg/h	27.070	3.127	3.060	0.280	10.565	1540.080	7083.940	0.220
L1. × 100kg/h	32.067	3.063	2.940	0.387	9.673	4545.177	11611.267	0.391
L1. × 120kg/h	28.470	3.240	3.070	0.537	8.687	6284.577	13035.383	0.484
L1. × 140kg/h	33.187	3.327	2.740	0.357	9.917	8021.557	14018.850	0.574
L2. × 80kg/h	31.990	3.540	3.140	0.530	10.580	2007.557	7627.721	0.264
L2. × 100kg/h	32.260	2.733	3.240	0.323	10.600	4725.873	11847.850	0.403
L2. × 120kg/h	28.920	2.833	3.330	0.267	10.89	6963.857	13214.610	0.528
L2. × 140kg/h	33.980	3.033	3.320	0.613	8.320	9153.597	14526.327	0.631
L3. × 80kg/h	31.840	3.330	2.030	0.410	12.69	3311.420	8531.726	0.384
L3. × 100kg/h	27.820	3.133	2.680	0.413	12.980	4305.537	12905.514	0.335
L3. × 120kg/h	33.403	3.330	2.980	0.327	13.350	5292.923	16940.443	0.315
L3. × 140kg/h	34.44	3.233	2.820	0.340	12.110	6357.547	18550.908	0.343
L4. × 80kg/h	32.330	3.100	3.023	0.560	8.083	2459.497	8088.419	0.308
L4. × 100kg/h	35.680	3.330	3.283	0.430	8.583	3466.233	12835.923	0.270
L4. × 120kg/h	33.920	3.033	3.257	0.483	11.013	3536.317	13202.983	0.268
L4. × 140kg/h	31.470	3.233	2.873	0.490	10.333	4616.540	14616.540	0.315
LSD (p≤0.05)	3.948	n.s	n.s	n.s	1.245	716.94	1453.537	0.077

 Table (7a) Effect of interactions of lines and seeding rates on seed yield and its components of grass pea at Qlyasan location

n.s not significant

8	Kanipanka Location									
Seeding rate *Line	No. of pods /plant	Pod length (cm)	No. of seeds/ pod	Weight of seeds/pod (g)	100 seed weight (g)	Seed yield (kg /h)	Biological yield (kg/ h)	Harvest index		
L1.×80kg/h	28.987	3.710	2.667	0.303	7.860	3316.747	9417.273	0.353		
L1. × 100kg/h	32.770	3.113	3.220	0.287	9.183	6211.843	13277.933	0.468		
L1. × 120kg/h	28.720	3.643	3.067	0.32	9.847	5951.243	16035.383	0.371		
L1. × 140kg/h	35.510	3.303	3.317	0.367	8.630	7188.223	18685.517	0.385		
L2. × 80kg/h	32.110	3.403	3.357	0.363	8.523	3490.890	9627.721	0.365		
L2. × 100kg/h	32.630	3.307	2.977	0.323	9.347	4292.540	12847.850	0.336		
L2. × 120kg/h	31.880	3.877	3.217	0.267	9.437	5930.523	16547.943	0.360		
L2. × 140kg/h	35.370	3.677	3.0330	0.613	9.897	6220.263	19526.327	0.319		
L3. × 80kg/h	33.027	3.003	3.513	0.407	11.770	5811.420	9495.059	0.613		
L3. × 100kg/h	29.350	3.297	3.220	0.423	12.407	6905.537	15238.847	0.454		
L3. × 120kg/h	34.107	3.550	3.513	0.423	12.247	8626.257	17607.110	0.490		
L3. × 140kg/h	35.130	3.573	3.397	0.427	12.547	9340.880	19550.908	0.478		
L4. × 80kg/h	32.410	3.670	3.070	0.543	9.773	3392.830	9755.0860	0.349		
L4. × 100kg/h	36.990	3.170	3.243	0.437	8.860	4032.900	13502.589	0.299		
L4. × 120kg/h	34.440	3.233	3.460	0.410	9.357	5536.317	15536.317	0.356		
L4. × 140kg/h	32.440	3.21	3.437	0.490	8.550	6616.540	18616.540	0.356		
LSD (p≤0.05)	4.635	n.s	n.s	n.s	n.s	961772	1063.719	0.34		

Table (7b) Effect of interactions of lines and seeding rates on seed yield and its components of grass pea at Kanipanka location

 Table (7c) Effect of interactions of lines and seeding rates on seed yield and its components of grass pea Average of both locations

	Average of both Locations										
			U	of both Locatio							
	No. of	Pod	No. of	Weight of	100 seed	Seed	Biological	Harvest			
Seeding rate *Line	pods	length	seeds/	U		yield (kg	yield				
-	/plant	(cm)	pod	seeds/pod(g)	weight(g)	/h)	(kg/ h)	index			
L1.*80kg/h	28.030	3.420	2.860	0.290	9.210	2428.410	8250.610	0.290			
L1. × 100kg/h	32.420	3.090	3.080	0.340	9.430	5378.510	12444.600	0.430			
L1. × 120kg/h	28.600	3.440	3.070	0.430	9.270	6117.910	14535.380	0.430			
L1. × 140kg/h	34.350	3.320	3.030	0.360	9.270	6304.890	16352.180	0.480			
L2. × 80kg/h	32.050	3.470	3.250	0.450	9.550	2749.220	8627.720	0.310			
L2. × 100kg/h	32.450	3.020	3.110	0.320	9.970	4509.210	12347.850	0.370			
L2. × 120kg/h	30.410	3.360	3.270	0.270	10.170	6447.190	14881.280	0.440			
L2. × 140kg/h	34.680	3.360	3.180	0.610	9.110	7686.930	17026.330	0.470			
L3. × 80kg/h	32.440	3.170	3.280	0.410	12.240	4561.420	9013.390	0.500			
L3. × 100kg/h	28.590	3.220	2.950	0.420	12.700	5605.540	14072.180	0.390			
L3. × 120kg/h	33.760	3.440	3.250	0.380	12.800	6959.590	17273.780	0.400			
L3. × 140kg/h	34.790	3.400	3.110	0.380	12.330	7849.210	19050.910	0.410			
L4. × 80kg/h	32.370	3.390	3.050	0.550	8.930	2926.160	8921.750	0.330			
L4. × 100kg/h	36.340	3.250	3.260	0.430	8.720	3749.570	13169.260	0.280			
L4. × 120kg/h	34.180	3.130	3.360	0.450	10.190	4536.320	14369.650	0.310			
L4. × 140kg/h	31.960	3.220	3.160	0.490	9.420	5616.540	16616.540	0.340			
LSD (p≤0.05)	2.980	n.s	n.s	0.074	n.s	1058.945	882.069	0.052			

n.s not significant

Data in Table 8 illustrate the effect of locations on seed yield and it is components of grass pea. This effect was highly significant for the number of pods/plant, 100 seed weight, seed yield and biological yield, but it was not significant for the rest. It was observed that the values recorded for the number of pods/plant, seed yield and biological yield at second location exceeded first location significantly by 3.332, 21.252and 18.44% respectively. The first location exceeded second location for the character 100 seed weight by 6.53%. These results confirm the suitability of the second location for growing this plant compare to the first location

table (8) Effect of locations on seed yield and its components of grass pea											
	No. of	Pod	No. of	Weight of	100 seed	Seed	Biological	Harvest			
Locations	pods	length	seeds/	seeds/pod(g)	weight(g)	yield (kg	yield(kg/	index			
	/plant	(cm)	pod	seeus/pou(g)	weight(g)	/h)	h)	Index			
Qlyasan	31.810	3.164	3.052	0.421	10.525	4786.768	12414.900	0.377			
Kanipanka	32.870	3.420	3.230	0.400	9.880	5804.059	14704.275	0.397			
LSD (p≤0.05)	0.681	n.s	n.s	n.s	0.681	636.853	46.942	n.s			

Table (8	Effect of locations on seed yield and its components of grass pea

CONCLUSION AND RECOMMENDATION

Significant differences among Lines due to most studied characters was observed, the variation of Lines performance was largely associated with climatically conditions and genetic variation existed among Lines at each location. Thus, Lines should be carefully selected for corresponding regions depending mainly on seasonal weather conditions. Increasing yield at high density can be directly attributes to large populations, and strong relationship between seed yield and plant population densities. Also It was observed that Kanipanka location is more suitable to grow this plant compare to the other location. Concluding further project is necessary on these two species under different plant population at different environmental condition. Depending on our result

It can be recommended Line number (3) IF102 of grass pea under the highest plant population using 140 kg/h for planting at both locations. Kanipanka location is more suitable for growing both forage crops and seed yield compare to Qlyasan location

REFERENCES

- Agaalikhani, M., Behnamfar, F., Eyshi Rezaei, E. and Bannayan Aval, M. (2014) 'Assessment of Sowing Date impacts on productivity of different Grass pea ecotypes', International Journal of Farming and Allied Sciences, 3.
- Agung, S. and Mcdonald, G. (1998) 'Effects of seed size and maturity on the growth and yield of faba bean (Vicia faba L.)', Australian journal of agricultural research, 49(1), pp. 79-88.
- Albayrak, S. and TÖngel, Ö. (2006) 'Path analyses of yield and yield-related traits of common vetch (Vicia sativa L.) under different rainfall conditions', Anadolu Tarım Bilimleri Dergisi, 21(1), pp. 27-32.
- Al-Doss, A., Assaeed, A. and Soliman, A. (1998) 'Growth characters and yield of some selected lines of grass pea (Lathyrus sativus)', *J. King Saud Univ., Agric. Sci*, 10, pp. 67-72.
- Al-Rifaee, M., Turk, M. A. and Tawaha, A. R. M. (2004) 'Effect of seed size and plant population density on yield and yield components of local fababean (Vicia faba L. major)', International Journal of Agriculture and Biology, 6(2), pp. 294-299.
- Berkowitz, A. R. (1988) 'Competition for resources in weed-crop mixtures'.
- Castro Coelho, J. and Aguiar Pinto, P. (1989) 'Plant density effects on the growth and development of winter faba bean (*Vicia faba L. var minor*)', *Faba Bean Information Service*.
- D steel, R. G. & Torrie, J. H. 1986. Principles and procedures of statistics: a biometrical approach, McGraw-Hill.
- Dantuma, G. a. R. T., . (1983) 'Whole crop physiology and yield components.', In: Hebblethwaite, P.D. (ed.), (143–58.).
- Idris, A. L. Y. (2008) 'Effect of seed size and plant spacing on yield and yield components of faba bean (Vicia faba L.)', Research Journal of Agriculture and Biological Sciences, 4(2), pp. 146-148.
- Kenicer, G. J., Kajita, T., Pennington, R. T. and Murata, J. (2005) 'Systematics and biogeography of Lathyrus (Leguminosae) based on internal transcribed spacer and cpDNA sequence data', American Journal of Botany, 92(7), pp. 1199-1209.

- Laghari, U. A., Shah, A. N., Kandhro, M. N., Jamro, G. M. and Talpur, K. H. (2016) 'Growth and Yield Response of Five Elite Grass Pea (Lathyrus sativus L.) Genotypes to Varying Levels of Potassium', Sarhad Journal of Agriculture, 32(3).
- Mehta, J., Starmer, C. and Sugden, R. (1994) 'The nature of salience: An experimental investigation of pure coordination games', The American Economic Review, 84(3), pp. 658-673.
- Mohler, C. L. (1996) 'Ecological bases for the cultural control of annual weeds', Journal of Production Agriculture, 9(4), pp. 468-474.
- Pilbeam, C., Akatse, J., Hebblethwaite, P. and Wright, S. (1992) 'Yield production in two contrasting forms of spring-sown faba bean in relation to water supply', *Field Crops Research*, 29(4), pp. 273-287.
- Rafaat, J. g. (2001) 'Estimations of Growth rate and yield components of three annual forage species accession. ', MSC. Thesis coll.of Agr. Univ.of sulaimani.
- Sammour, R. H., Mustafa, A. E.-Z., Badr, S. and Tahr, W. (2007) 'Genetic variability of some quality traits in Lathyrus spp. germplasm', Acta agriculturae Slovenica, 90(1), pp. 33-43.
- Siddique, K., Brinsmead, R., Knight, R., Knights, E., Paull, J. and Rose, I. (2000) 'Adaptation of chickpea (*Cicer arietinum L.*) and faba bean (Vicia faba L.) to Australia', *Linking research and marketing opportunities for pulses in the 21st century:* Springer, pp. 289-303.
- Singh, S., Singh, N. and Pandey, R. (1992) 'Performance of faba bean varieties at different plant densities [Vicia faba]', Faba Bean Information Service.
- Tawfiq, S. E. (2000) 'Influence of planting dates on seed yield and it is components of some forage species in sulaimani region .', j.of Dohuk univ., 1(2), pp. 27-30.

Lathyrus تأثير معدل البذار والموقع على بعض خطوط الهرطمان في النمو والحاصل ومكوناته لبعض التراكيب الوراثية للهرطمان sativus في منطقة السليمانية

ئافان رحمان عبدالله ، جوان غريب رفعت

قسم بايوتكنولوجي والمحاصيل الحقلية - كلية علوم هندسة الزراعية في جامعة السليمانية في اقليم كردستان

المستخلص

اجريت هذه الدراسة في موقعين مختلفين بمحافظة السليمانية و هما قلياسان وكانيبانكا خلال الموسم الشتوي 2017-2018 بهدف تقييم استجابة اربعة خطوط من الهرطمان(IF067, IF133, IF102, IF033). تحت تأثير أربعة معدلات من بذار (80كغماهكتار, 100 كغماهكتار, 120 كغماهكتار, 140 كغماهكتار) لمعرفة تأثير ما على نمو وحاصل البذور. زرعت التجرية في 5/ كانون اول/ 2017 كانىبانكا و 6/ كانون اول/ 2017 في قلياسان، وفقا لتصميم القطاعات العشوائية الكاملة RCBD بثلاث مكررات، قورنت المتوسطات حسب اختيار أقل فرق معنوى (L.S.D) تحت مستوى 0,5 فيما يخص خطوط الهرطمان كمعدل للموقعين، وجد بأن تأثير التفاعل بين خطوط مع معدل البذار كان عالى المعنوبة للصفات عدد الأيام اللازمة الى %50 تزهير، وزن الاوراق الجاف، نسبة الأوراق الى السيقان وعدد العقد البكتيرية للنبات. أعلى القيم للصفات عدد الأيام اللازمة الى 50% تزهير ووزن الاوراق الجاف كانت 127,260 و2,520 غم سجلت بين التفاعل خط رقم IF067 مع 140كغم بذور اهكتار . تأثير المواقع على النمو والعلف كانت عالى المعنونة للصفات عدد الأيام اللازمة لنضج، وزن الاوراق الجاف، وزن السيقان الجاف، نسبة الأوراق الى السيقان وعدد العقد البكتيرية /نبات، بينما كانت معنوبة للصفات طول النبات. وجد بأن الموقع الثاني سجلت أعلى القيم للصفات طول النبات، وزن الاوراق الجاف، وزن السيقان الجاف، نسبة الأوراق الى السيقان وعدد العقد البكتيرية/ نبات 60,080 سم، 1,970غم، 1,850غم، 2,600, 16,390 على التوالي. متوسط كلا الموقعين كانت اختلاف عالى المعنوية بسبب تأثير الخطوط للصفات عدد الأيام اللازمة للنضج، وزن الاوراق الجاف، وزن البذور هكتار 1, نسبة الأوراق الى السيقان وعدد العقد البكتيرية /نبات 1. خط رقم IF067 أنتجت أعلى القيم للصفات عدد الأيام اللازمة للنضج، وزن السيقان الجاف، وعدد العقد البكتيرية/ نبات⁻¹ مع 155,600 يوم، 4,990, 14.27 على التوالي. تأثير معدل البذار على حاصل البذور ومكوناته لنبات الهرطمان في الموقعين ومتوسط الموقعين كانت عالى المعنوبة للصفات عدد القرنات نبات، لحاصل البذور، الحاصل البايولوجي، ودليل الحصاد. وكمعدل الموقعين فأن استخدام 140كغما هكتار بذور اعطى اعلى القيم لمعظم الصفات المدروسة.

الكلمات المفتاحية: معدل البذار، الموقع، الهرطمان، الحاصل ومكوناته، التراكيب الورائية

Appendices

Appendix (1) Mean squares of	variance analysis of grass	pea for some growth	and forage characters
------------------------------	----------------------------	---------------------	-----------------------

Plant Height (cm) 71.16n.s 914.125* * 181.301* * 228.534* * 33.599 264.352* 93.52n.s 176.234* 82.334n.s 54.941	No. of branches/ plant 0.609n.s 0.62n.s 9.049** 1.123n.s 0.77 0.226n.s 1.536n.s 3.463* 0.693n.s 0.975	Days to %50 flowering 0.77n.s 6.06* 4.132n.s 15.025** 1.528 Ka 2.161n.s 4.913* 3.699* 4.125**	Days to maturity 197.017n.s 151.782n.s 189.65n.s 236.713n.s 204.286 nipanka 4.467n.s 62.376** 89.432** 47.569**	Leaf stem ratio 0.065n.s 4.741** 1.702** 1.181** 0.026 5.459n.s 0.451n.s 11.97**	Leaf dry weight (g) 0.064n.s 0.677** 0.819** 0.395** 0.027 0.027 0.082n.s 1.256** 8.22**	Stem dry weight (g) 0.225n.s 0.577** 2.249** 0.249* 0.091 1.032n.s 1.358n.s 0.669n.s	No. of bacterial nodules /plant 0.418n.s 11.99** 27.191** 21.858** 1.108 0.687n.s 9.577** 0.507n.s
914.125* * 181.301* 228.534* 33.599 264.352* 93.52n.s 176.234* 82.334n.s	0.62n.s 9.049** 1.123n.s 0.77 0.226n.s 1.536n.s 3.463* 0.693n.s	6.06* 4.132n.s 15.025** 1.528 Ka 2.161n.s 4.913* 3.699*	151.782n.s 189.65n.s 236.713n.s 204.286 nipanka 4.467n.s 62.376** 89.432**	4.741** 1.702** 1.181** 0.026 5.459n.s 0.451n.s 11.97**	0.677** 0.819** 0.395** 0.027 0.082n.s 1.256**	0.577** 2.249** 0.249* 0.091 1.032n.s 1.358n.s	11.99** 27.191** 21.858** 1.108 0.687n.s 9.577**
* 181.301* * 228.534* 33.599 264.352* 93.52n.s 176.234* 82.334n.s	9.049** 1.123n.s 0.77 0.226n.s 1.536n.s 3.463* 0.693n.s	4.132n.s 15.025** 1.528 Ka 2.161n.s 4.913* 3.699*	189.65n.s 236.713n.s 204.286 nipanka 4.467n.s 62.376** 89.432**	1.702** 1.181** 0.026 5.459n.s 0.451n.s 11.97**	0.819** 0.395** 0.027 0.082n.s 1.256**	2.249** 0.249* 0.091 1.032n.s 1.358n.s	27.191** 21.858** 1.108 0.687n.s 9.577**
* 228.534* * 33.599 264.352* 93.52n.s 176.234* 82.334n.s	1.123n.s 0.77 0.226n.s 1.536n.s 3.463* 0.693n.s	15.025** 1.528 Ka 2.161n.s 4.913* 3.699*	236.713n.s 204.286 nipanka 4.467n.s 62.376** 89.432**	1.181** 0.026 5.459n.s 0.451n.s 11.97**	0.395** 0.027 0.082n.s 1.256**	0.249* 0.091 1.032n.s 1.358n.s	21.858** 1.108 0.687n.s 9.577**
* 33.599 264.352* 93.52n.s 176.234* 82.334n.s	0.77 0.226n.s 1.536n.s 3.463* 0.693n.s	1.528 Ka 2.161n.s 4.913* 3.699*	204.286 nipanka 4.467n.s 62.376** 89.432**	0.026 5.459n.s 0.451n.s 11.97**	0.027 0.082n.s 1.256**	0.091 1.032n.s 1.358n.s	1.108 0.687n.s 9.577**
264.352* 93.52n.s 176.234* 82.334n.s	0.226n.s 1.536n.s 3.463* 0.693n.s	Ka 2.161n.s 4.913* 3.699*	nipanka 4.467n.s 62.376** 89.432**	5.459n.s 0.451n.s 11.97**	0.082n.s 1.256**	1.032n.s 1.358n.s	0.687n.s 9.577**
93.52n.s 176.234* 82.334n.s	1.536n.s 3.463* 0.693n.s	2.161n.s 4.913* 3.699*	4.467n.s 62.376** 89.432**	0.451n.s 11.97**	1.256**	1.358n.s	9.577**
93.52n.s 176.234* 82.334n.s	1.536n.s 3.463* 0.693n.s	4.913* 3.699*	62.376** 89.432**	0.451n.s 11.97**	1.256**	1.358n.s	9.577**
176.234* 82.334n.s	3.463* 0.693n.s	3.699*	89.432**	11.97**			
82.334n.s	0.693n.s				8.22**	0.669n.s	0.507n.s
		4.125**	47.569**				
54.941	0.075			3.32n.s	2.143**	0.488n.s	14.454**
	0.975	1.119	1.733	2.093	0.136	0.557	1.314
	Avera	age of bo	th locatior	is		•	
1538.241 *	0.65n.s	3042n.s	5196**	74**	22.85**	14.09**	47.88**
167.5756	0.418	1.466	100.7	2.76	0.073	0.629	0.553
669.129* *	1.815n.s	9.532**	67.64n.s	1.69n.s	1.876**	1.293*	21.46**
338.516* *	0.342n.s	1.441n.s	146.5n.s	3.5*	0.057n.s	0.641n.s	0.11*
193.583* *	11.25**	1.35n.s	191.3n.s	11.2**	6.278**	10.89**	44.06**
57.908**	1.75n.s	6.481*	87.77n.s	2.49*	2.758**	1.65**	2.011*
247.184n .s	0.775n.s	8.93**	185.7n.s	3.55**	1.936**	0.405n.s	39.7**
63.68**	1.04	10.22**	98.59n.s	0.95n.s	0.602**	0.332n.s	1.152n.s
	0.874	1.324	103	1.06	0.081	0.324	1.211
4	* 57.908** 247.184n .s	* 11.25** 57.908** 1.75n.s 247.184n 0.775n.s 63.68** 1.04	* 11.25** 1.35n.s 57.908** 1.75n.s 6.481* 247.184n 0.775n.s 8.93** 63.68** 1.04 10.22**	* 11.25** 1.35n.s 191.3n.s 57.908** 1.75n.s 6.481* 87.77n.s 247.184n 0.775n.s 8.93** 185.7n.s 63.68** 1.04 10.22** 98.59n.s	* 11.25** 1.35n.s 191.3n.s 11.2** 57.908** 1.75n.s 6.481* 87.77n.s 2.49* 247.184n 0.775n.s 8.93** 185.7n.s 3.55** 63.68** 1.04 10.22** 98.59n.s 0.95n.s	* 11.25** 1.35n.s 191.3n.s 11.2** 6.278** 57.908** 1.75n.s 6.481* 87.77n.s 2.49* 2.758** 247.184n 0.775n.s 8.93** 185.7n.s 3.55** 1.936** 63.68** 1.04 10.22** 98.59n.s 0.95n.s 0.602**	** 11.25** 1.35n.s 191.3n.s 11.2** 6.278** 10.89** 57.908** 1.75n.s 6.481* 87.77n.s 2.49* 2.758** 1.65** 247.184n 0.775n.s 8.93** 185.7n.s 3.55** 1.936** 0.405n.s 63.68** 1.04 10.22** 98.59n.s 0.95n.s 0.602** 0.332n.s

				Qly	asan Loca	tion			
S.O.V	d.f	No.of pods /plant	Pod length (cm)	No.of seeds/ pod	Weight of seeds/pod	100 seed weight(g)	Seed yield kg /h	Biological yield kg/ h	Harvest index
Block	2	2.385n. s	1.121n .s	0.055n.s	0.008n.s	0.198n.s	2444296.10 6**	791.5294n.s	0.016**
Lines	3	19.907 *	0.105n .s	0.339n.s	0.033n.s	28.01**	10242643.6 24**	18733713.438**	0.0661**
Seeding rate	3	14.227 n.s	0.107n .s	0.098n.s	0.011n.s	1.38n.s	47663777.1 339**	131684624.084* *	0.0639**
Line × Seeding rate	9	19.969 *	0.134n .s	0.063n.s	0.04n.s	3.79**	3707754.55 4**	2585145.315**	0.0281**
Error	30	7.73	0.377	0.166	0.018	0.558	184903.8	760032	0.002
				Kni	panka Loc	ation			
Block	2	3.51n.s	1.395*	0.214n.s	0.015n.s	0.977n.s	74713.157n.s	12894.178n.s	0.00008n. s
Lines	3	13.34n. s	0.143n .s	0.286n.s	0.048n.s	29.98**	20018384.327 **	3366797.257 **	0.074**
Seeding rate	3	2.34n.s	0.93*	0.143n.s	0.01n.s	0.651n.s	25216068.792 **	198231574.3 02**	0.003n.s
Line × Seeding rate	9	17.67*	0.187n .s	0.136n.s	0.17n.s	1.087n.s	750280.672*	1051414.015 *	0.008**
Error	30	7.73	0.266	0.145	0.014	0.719	332754.6	407937	0.002
			I	Averag	ge of both	Locations		- I	
Location	1	27.2**	1.584n .s	0.78n.s	0.011n.s	9.769**	24837176.0 4**	125789709.4**	0.0095n.s
Error a	4	2.95	1.258	0.135	0.011	0.588	1259505	6842.85	0.0084
Lines	3	32.9**	0.022n .s	0.199n.s	0.066*	57.72**	16936293.6 3**	18492745.76**	0.058**
Line×L	3	0.4n.s	0.226n .s	0.425n.s	0.015n.s	0.276n.s	13505995.4 9**	3607764.931**	0.081**
Seeding rate	3	33.6**	0.243n .s	0.1n.s	0.039n.s	1.911*	70986975.4 4**	323993433.5**	0.022**
Seeding rate ×Location	3	0.29n.s	0.123n .s	0.085n.s	0.006n.s	0.853n.s	1892870.48 7**	5922764.931**	0.044**
Line× Seeding rate	9	36.2**	0.106n .s	0.079n.s	0.047**	0.819n.s	20810838.6 11**	2024257.36**	0.022**
Line × Seeding rate*L	9	1.44n.s	0.215n .s	0.12n.s	0.01	4.061**	2312611.22 7**	1612301.968**	0.01132*
Error b	60	6.67	0.322	0.156	0.016	0.638	258829	583534	0.002

Appendix (2)The mean squares of variance analysis of grass pea for seed yield and its components

N.S not Significant *Significant

Appendix (3)Meteorological data for Qlyasan and Knipanka locations

		C <i>J</i>	asan ation		Knipanka location				
Month	Mini. Temp. (C°)	Maxi. Temp. (C°)	Avg. Temp.(C°)	Rainfall (mm)	Mini. Temp.(C°)	Maxi. Temp.(C°)	Avg. Temp. (C°)	Rainfall (mm)	
October	10.4	33.1	21.2	10	22.6	30	15.1	-	
November	7.6	23.9	14.2	114.6	14.4	20	8.8	71	
December	-2.5	17.8	7	22.2	10.2	16.1	4.4	18.5	
January	1.4	15.6	7.8	72.4	7.8	12.5	3.1	60	
Febbruary	-2.3	20.9	8.7	323	10.3	14.9	6.1	281	
March	1	24.4	13	44.6	14.7	21.3	8.1	19	
April	2.2	31.6	17.4	98.6	17.1	24	10.5	90.5	
May	13	38.1	24.7	70.4	22.2	29.5	15	68	
Total rainfall				755.8				608	